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ABSTRACT
In this paper, we outline a diffractive practice of machine learning
(ML) in the frame of material-centered interaction design. To this
aim, we review related work in ML, HCI, design, new interfaces
for musical expression, and computational art, and introduce two
practice-based studies of music performance and robotic art based
on interactive machine learning tools, with the hope of revealing
the computational materiality of ML, and the potential of embod-
iment to craft prototypes of ML that reconfigure conceptual or
technical approaches to ML. We derive five interference conditions
for such art-based ML prototypes—situational whole, small data,
shallow model, learnable algorithm, and somaesthetic behaviour—
and describe their widening of design and engineering practices of
ML prototyping. Finally, we sketch how a process of intra-active
machine learning could complement that of interactive machine
learning to take materiality as an entry point for ML design within
HCI.

CCS CONCEPTS
• Applied computing → Media arts; Sound and music com-
puting; •Human-centered computing→ Interface designpro-
totyping.
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1 INTRODUCTION
In recent years, design research started approaching machine learn-
ing (ML) as a design material [89]. Grounded in studies of how user
experience designers effectively collaborate with ML engineers
[27, 91], it seeks to develop conceptual frameworks to envision
divergent and socially-situated designs for ML [9, 26]. Yet, design
research still lacks specific tools to materialise such ML concepts
into design artifacts [27]. Researchers stated that “ML challenges the
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general idea of prototyping” [89], which is certainly true when con-
sidering big data and deep learning approaches pushed by modern
ML engineering, but seems to overlook alternative implementations
of ML that could emerge from creative practice with ML. For exam-
ple, performers in the field of NIME—acronym for New Interfaces
for Musical Expression [67]—developed an interactive account of
ML, which can, for instance, be used to tacitly train ML models
using small, user-provided data, to craft custom gestural controllers
of sound [11, 30, 53]. More generally, embodied or somaesthetic
design approaches could help design research go beyond language
and logic to describe and explore ML as design material [48].

We believe that art practices that use code and ML as creative
material can be one such embodied approach to implement con-
crete prototypes of ML. In code-based art practice [55], artists ap-
proach ML not only as a technique to engineer logical concepts
or functionalities—such as automatic classification or reward max-
imisation by learning agents—; they also approached ML as a com-
putational material, whose raw properties, such as adaptive learn-
ing [20], model extrapolation [32], algorithmic exploration [76],
or probabilistic uncertainty [9], can be crafted and experienced
within installations, performances, and other hybrid embodiments
[1, 5, 25, 39, 64]. By focusing on MLmateriality, code-based art prac-
tice may thus help design research explore ML for what it is—i.e., a
set of computational material possessing specific properties—rather
than on what it is currently used for—e.g., a set of computational
techniques contributing to socio-cultural discourses on artificial
intelligence.

In this paper, we rely on our own art practice and that of other
artists to further understandings of ML materiality for design.
Specifically, we propose to explore diffractive methods [6] to frame
analysis and production of art-based ML prototypes within design
research, by specially attending and responding to social discourses
and material configurations in which ML is embedded. According
to Karen Barad’s material feminist theory [6], diffraction intends
to displace reflection, which assumes pre-existing subjects and ob-
jects interacting with each others, as a dominant model of inquiry.
It does so by assuming that humans and non-humans are bound
together within complex socio-material practices, which are fluid
and ever evolving; and refers to their entanglement as intra-action,
as opposed to interaction [6]. As such, we believe that diffractive
methods may help design research to consider performative and
transformative socio-material phenomena of code-based art prac-
tice, such as artists becoming engineers, algorithms living things,
or humans embodying computational material [68, 69], as part of
ML prototyping practices. By doing so, we do not want to impose a
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static understanding of the theoretical interest of di�ractive prac-
tices for design research. Rather, our wish is to start a dialogue
with designers and researchers about the generative potentials of
di�ractive practices, and how they may expand or restrain more
widespread methods of participatory design or material-centered
interaction design within HCI. In this, we continue prior work from
the HCI community on exploring art-based methods to recon�gure
core computing notions and enrich interaction design [8, 29, 50].

To do so, we provide a review of ML practices within art, design,
engineering and HCI, and two stabilised accounts of instances of art-
based ML prototyping of our own, which we refer to asdi�ractive
art practice, a term recently introduced by artists-researchers Jane
Prophet and Helen Pritchard to describe code-based art practices
that attend and respond to entanglements of social and technical�
thus material�aspects of computation [68, 69]. These two interre-
lated empirical studies explore di�ractive methods in two comple-
mentary ways for ML-based art practice. In the �rst study, di�rac-
tion is used as a method to analyse the role that ML materiality
played along the prototyping of a NIME instrument. In the sec-
ond study, di�raction is used as a method to practice with ML and
other practitioners and material agencies along the prototyping of
a robotic art installation.

Our work led us to frame art-based ML prototyping as (a) a mode
of craft that takes embodiment of ML computational properties as
entry point for design and engineering, and (b) a socio-material
practice that reveals and recon�gure the �uid boundaries between
humans and ML technology. Speci�cally, our two studies suggest
�ve conditions for art-based ML prototyping to interfere with con-
ceptual and technical approaches to ML and widen design or en-
gineering practices of ML prototyping: namely,situational whole,
small data, shallow model, learnable algorithm, andsomaesthetic
behaviour. Finally, we rely on Barad's notion ofintra-action[6] to
sketch how a process ofintra-active machine learningmay help
to analyse practices of ML prototyping from a more-than-human
perspective�by analogy with human-centred perspectives on ML
brought by interactive machine learning [43, 70]. To sum up our
contributions, we: (1) present two artistic works made by crafting
and experimenting with ML materiality; (2) explore di�raction as
conceptual and methodological framework for both art practice
with ML and analysis of art practice with ML in the frame of HCI;
and (3) identify �ve socio-technical conditions that contribute to
an understanding of ML prototypes as valid research sites in wider
material-centered interaction design.

2 RELATED WORK
In this section, we start by introducing elements of ML that consti-
tutes its materiality. Then, we review previous work investigating
ML as design material, with its promises and caveats. We then
present how ML can be considered as creative material in art prac-
tice. We �nally describe the methodological concepts that we bring
forward to frame code-based art practice within design research.

2.1 Material Elements of ML
The next paragraphs introduce components of ML as de�ned by
engineering approaches. These de�nitions are useful to understand
how art practice has enabled to switch from a technical perspective

to a materialperspective on ML components, and how this switch-
ing may imply adopting novel methods for design. We identi�ed
four elements constitutive of ML materiality (schematised in Figure
1):techniques, data, modelsandalgorithms. Each element possesses
di�erent structures on their own, as well as di�erent functionalities
related to others.

Figure 1: Diagram for ML materiality. In bold: elements; in
italics: structures; in grey arrows: functionalities.

2.1.1 Techniques.ML de�nes di�erent techniquesthat enable com-
puters to perform speci�c tasks in relation to a goal by directly
learning from data. Insupervised learning, the goal is to learn a
function that maps inputs to outputs based on example pairs of
input-output data. The learned function enables to execute tasks
such as automatic classi�cation and recognition of new input data.
Unsupervised learningrelies on input data only: the goal is to learn
patterns within the data to enable complex tasks such as clustering
or generation. Inreinforcement learning, the goal is to learn an ac-
tion policy within an environment so as to maximize some notion
of reward [77]. Other types of learning techniques exist, but in the
scope of this paper�and the projects presented below�, we focus
on these three.

2.1.2 Data.ML relies ondatato perform the tasks de�ned above.
The data-driven nature of ML is what makes it di�erent from pro-
gramming, which requires explicitly specifying all rules of a pro-
gram to make it work. It also makes ML attractive in a design
context, as data can be used to tacitly convey desired forms or be-
haviours to a computer. In modern ML,big datamay be harvested
or synthetically created to support learning [82]. In some cases,
small datamay su�ce, which may involve designing appropriated
data features�e.g.,gestural features, such as shape or frequency, to
use ML for gesture recognition.

2.1.3 Models.Modelsdesignate mathematical functions that em-
body a set of statistical assumptions on data. Taken alone, models
cannot a�ord learning: they rather act as probabilistic representa-
tions of data, and formal structures for the learning process. Some
models can be trained from small amounts of data�e.g., shallow
models�, but in turn are highly sensitive to the choice of data
features. Others require large amount of data to be trained�e.g.,
deeplearning models [44]�but may automatically compute data
features in return.
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2.1.4 Algorithms.Algorithmsde�ne a set of rules used for optimiz-
ing a model's parameters in relation to data. Importantly, algorithms
may beinterpretablein the sense that their internal functioning
can be intuitively understood by humans [71]� e.g.,decision trees.
Others (the large of majority of them) remainblack-boxes, and are
subject to research to make their decisions explainable from both
human and algorithmic perspectives [70, 87].

In most modern applications of ML, the incremental and pro-
gressive learning process is performed o�ine and separated from
usage. Typically, a deep learning model is trained by ML engineers
over large data sets; once trained, the model can be employed to
perform its task without further training. In the emerging �eld of
interactive machine learning, adaptation is a key property of ML,
as learning is performed online: typically, people can add, delete, or
modify small amounts of data to tacitly train an ML model [28], or
experiment with various parameters of an algorithm to �ne-tune a
model's learning [51].

2.2 ML as Design Material
Modern engineering of ML techniques has arguably provoked and
prevented many conversations on how ML could be designed, and
on what makes an ML system optimal, harmful, or ethical. How-
ever, the discourse has often focused on technical considerations
related to ML engineering. This notably involves the big amount
of data required to optimise the millions of model parameters, and
the resources needed to collect and annotate them. This also in-
volves the computational resources needed to ful�ll these storage
and learning activities, which can become quite high compared to
standard computers' performance [46]. As such, many ML-related
research in HCI has so far been driven by advances in ML engineer-
ing rather than design innovation [90]. This resulted in the creation
of ML systems whose design was partly speci�ed by computational
ML models. For instance, endeavours have focused on developing
improved user models [56, 63], a�ective-enabled systems [19], or
intelligent agents [58, 62].

As as consequence, we can observe that most of ML prototyp-
ing activities is often hidden in ML research publications, as high-
lighted by research in the emerging �eld of human-centred machine
learning [43]. ML prototyping is here understood as the steps and
decisions taken before the communication and dissemination of
the �nal results. This leaves all the human work at stake in ML
prototyping activities, such as carefully labelling training data sets,
or choosing the best hyperparameters for a given algorithm, opaque
to the public or fellows in the �eld. Model comparison remains the
main aspect of ML prototyping that is published. Yet, it is often led
based on quantitative concepts, such as algorithmic performance on
standardised data sets, and as a result, only led within engineering
labs [86].

In recent years, design research has been concerned by devel-
oping divergent ways of analysing and practicing with ML. Re-
searchers sought to develop alternative conceptual frameworks for
both ML and arti�cial intelligence. Such approaches are essential
to challenge the networks of socio-material practices in which ML
is embedded. Socio-material practices of ML are here understood
as human ways of engineering ML models�as described above�,
as well as the technical elements constituting the materiality of

ML. However, design research still lacks speci�c tools to go beyond
Wizard of Oz ML prototypes [17]�where expected functionalities
are simulated and therefore biased by the researcher's inquiry�,
and materialise its alternative ML concepts into fully-functioning
design artifacts [27, 89]. As a result, most research on ML as de-
sign material remain restrained in conceptual approaches, leaving
hands-on exploration of ML materiality to software engineers who
have expertise in ML.

In this context, we propose to look at the emergent �eld of
human-centred ML, which applies user-centred and participatory
design methods to design interactive machine learning tools [31, 76,
81], highlighting the qualitative concepts used by non-ML experts
users to evaluate ML compared to quantitative concepts used by
ML engineers [2]. Interestingly, Yang et al. observed how small data
approaches of interactive machine learning helped designers who
are not ML experts to craft and experiment with ML to build func-
tional systems [92]. We are interested in deepening understanding
of such hands-on, material-centered approaches to ML design.

Material-centered interaction design sought to bring material
perspectives into HCI inquiry [24,88]. Within this practice-oriented
paradigm, physical and computational material are often placed on
an equal footing for design [85]. Scholars have sought to produce
conceptual frameworks for materials to be integrated earlier in the
design process [41]. Interestingly, researchers explored ways to
provide materials with more agency along research through design
processes, approaching them as co-ethnographers [42]. We argue
that this approach is the one implicitly brought by computational
artists and NIME practitioners, as presented in the following section.

2.3 ML as Creative Material
Practices in NIME and computational art have explored ML materi-
ality beyond conceptual or technical lenses, by adopting a crafting
approach to code and ML as creative material [55]. In these prac-
tices, roles of artists, designers, or engineers may often be �uid
along creative processes, with artists practicing with code, engi-
neers exploring unconventional implementations, or even some-
times, artists, designers, and engineers being one same person. Such
hands-on approaches to ML materiality have brought about novel
con�gurations for ML that extend or even challenge design or en-
gineering approaches to ML�e.g.,human-machine co-creativity
[22, 23].

Computational artists have crafted ML materials within hybrid
physical artworks and mediums to reveal and inquire our intimate
entanglement with ML technology [4]. Poems by Allison Parrish
reveal the intuitive coherence of deep learning models trained on
large text data sets [64]. Video work by Memo Akten explores how
images generated by deep learning models trained on large data
sets push us to re�ect on our collective representations of the world
[1]. Sound sculptures by Stephanie Dinkins crafted through small
data harvested by diverse communities call for better consideration
of race, gender, and aging in the building of ML technology [25].
Robotic artworks by So�an Audry explore the a�ective potentials
of adaptive behaviors produced by shallow models of reinforce-
ment learning when embodied by objects [3, 5]. Installations by
Petra Gemeinboeck and Rob Saunders explore how ML-driven al-
gorithmic exploration may provide robots with a sense of agency
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and aliveness [39, 40]. Collective practice ofCoMo, a smartphone-
based web application based on interactive supervised learning,
enabled a wide range of movement practitioners to experience ML
computational properties through performance [59].

In addition, the NIME community has explored embodied ways
of approaching ML, focusing on music performance as one spe-
ci�c case of interaction with sound and technology [11, 30, 53].
Earlier work from the MIT Media Lab explored ML to craft hyper-
instruments [57], computer theaters [66], as well as novel gestural
interaction within virtual musical environments [38]. More recently,
deformable objects were crafted to explore pre-trained ML mod-
els of sound by mapping performers' haptic data to ML [79, 80].
Live coding environments were developed to explore data and al-
gorithms as raw material for audiovisual improvisation [52, 94].
Interestingly, interactive machine learning was also explored to
craft NIMEs, which essentially concerns the creation of a mapping
between input movement data and sound output. Bevilacqua et
al.'sGesture Followerpioneered the use of interactive supervised
learning to craft custom gestural controllers by iteratively training
a real-time movement recogniser model using movement demon-
strations [10]�an approach followed by Françoise et al.'sXMM
[34], and many other tools [12, 21, 75]. Fiebrink et al.'sWekinator
[31, 33] was designed to allow performers and musicians to craft
sound interactions through demonstrations and allowed for incre-
mentally act upon ML components as materials constituting the
interaction design. Recently, Scurto et al.'sCo-Explorerused inter-
active reinforcement learning to let people perform sound space
exploration by communicating positive or negative reward data to
an algorithmic agent [76]. Reinforcement learning was here used
to craft sounds as well as exploration behaviours produced by the
algorithmic agent.

In this paper, we propose to make use of interactive machine
learning tools developed within the NIME community�speci�cally,
XMM for interactive supervised learning andCo-Explorerfor in-
teractive reinforcement learning�in order to facilitate hands-on
exploration and craft of ML materiality. Our aim now is to identify
a methodological framework in which to situate such code-based
art practices as potential approach for design research.

2.4 On Design Research Methods
Artistic methods and processes were recently introduced into HCI
research to enrich both conceptual and technical advances on com-
putation [8, 50]. Speci�cally, re�exive methodswere employed to
study participatory design of interactive machine learning with
artists and HCI researchers in contexts of art practice. Caramiaux
and Donnarumma used subjective inquiry to re�ect on their �ve-
year collaboration on ML for music performance [20]. Fiebrink
and Sonami used interviews to relate their eight-year collaboration
on ML for instrument design [32]. While highlighting the shifting
roles and perspectives of both artists and researchers along the ML
design process, re�exive methods put the emphasis on humans as
cultural entities able to produce re�ection, leaving little room for
agency of ML as a material entity.

This paper proposes to exploredi�ractive practicesas method
to attend and respond to such speci�c entanglements. Di�ractive
practices combine two practical advantages of participatory design

and material-centered interaction design: namely, recognition of
di�erences in human experiences as generative phenomena, and
recognition of non-humans as producers of material agency [6]. It
does so by relying on the practitioner'sembodied engagementwith
diverse human and non-human entities, including data [78] and
other practitioners [47]. Crucially, through her material feminist
theory, Barad supports the idea that di�raction creates something
ontologically new, breaking out of the cyclical, inductive realm of
re�ection [6].

The following sections introduce two interrelated studies explor-
ing the potential of di�ractive methods for prototyping ML through
art practice. In the �rst study, di�raction is used as a method to
analyse ML materiality in a NIME instrument, created following
a linear process of conceptualisation, ML prototyping, and experi-
mentation with performers. In the second study, di�raction is used
from the starting of the project, as a method to iteratively and
recursively practice with ML with other human and non-human
actors, in the context of a robotic art project. As mentioned above,
we propose to use the termdi�ractive art practice, introduced by
artists-researchers Jane Prophet and Helen Pritchard [68, 69], to re-
fer to our such art practice with ML following a di�ractive method.
Rather than deepening theoretical understandings of di�ractive
methods, our wish is to explore how they could recon�gure prac-
tices of design and engineering usually employed with ML.

As will be detailed in each section's introductions, each study
was conducted by the �rst author in a speci�c academic institution�
both located in France�, the �rst dedicated to music research, and
the second to art and design research. Their common aim was to
design novel structures and functionalities for ML by approaching
it as a creative material following a di�ractive method. In Sections
3 and 4, we will see that these novel designs for ML were tightly
entangled with the design of novel human-machine interactions,
and that both �uidly emerged through interference of human and
non-human agencies along design processes. Thus, as will be dis-
cussed in Section 5, we believe that these two studies open up new
spaces for material-centered interaction design, as well as for design
research on, with, and through ML.

3 STUDY 1:SOMASTICKS
This section relates the crafting of an ML-driven NIME,somasticks,
conducted between 2017 and 2019 by the �rst and third author
at IRCAM, Paris, France, and its experimentation by performers
during the �movA lab days�, an international workshop held in
Nantes, France. In this study, the �rst author acted as a NIME
performer and designer working with ML as creative material. The
third author participated mainly in the form of conceptual and
technical advice on ML implementation. The study adopted a linear
approach to ML prototyping: �rst, (1) crafting an ML prototype for
gestural interaction with sound based on the �rst author's embodied
perspectives on ML materiality; then, (2) using a di�ractive method
to analyse di�erences in performers' embodied perspectives on ML
as valid and generative results for prototyping.
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3.1 Description
somasticksare augmented drumsticks that seek to emphasize the
somatic side of drumming practice (see Figure 2). Contrary to stan-
dard drumsticks,somasticksdo not need to hit any physical object
to produce sound, but rather may be continuously waved in the air
to trigger recorded drum sounds. Such a work�ow may encourage
performers to explore various movements in reaction to the internal
sensations that sounds may produce within their body, thus helping
cultivate their somatic knowledge over time.

Real drumsticks were used as tangible objects creating gestural
a�ordances and suggesting movements related to drumming. Wire-
less sensors1 were embedded to the sticks using a 3D-printed sup-
port speci�cally designed for drumsticks to harvest movement ac-
celeration data from a performer. As will be detailed below, recorded
drum samples were selected and curated to make the NIME sound
like an actual drum, and ML materials were crafted to adapt sound
generation to the performer's movement.

Figure 2: Rendering for somasticks.

3.2 ML Prototyping
Our wish was to adopt an embodied approach to ML to craft gestural
interaction with sound withinsomasticks. We thus built on the �rst
author's practice as NIME performer to elicit embodied concepts
related to drumming, and used an interactive machine learning tool
to craft these concepts within a concrete prototype.

3.2.1 Eliciting Embodied Concepts.The �rst embodied concept
that we identi�ed consisted in designing a form of �kinaesthetic
zoom� [35], where the sticks increase in sensibility when move-
ment activity decreases. This embodied concept can be found in
drumming, where smaller gestures often require the performer to
focus deeper on the perception of their body movement in space,
in relation to sound.

A second embodied concept consisted in designing interactions
with sound that account for the periodicity typical of drumming
movements. Instead of raw accelerometer data, we decided to design
data featuresrelated to movement frequency. We identi�ed online
wavelet analysis2 as one method to compute a spectrogram of
performers' movement in real-time. The resulting work�ow for
performers thus consists in producing stable movement qualities

1http://ismm.ircam.fr/riot/
2http://ismm.ircam.fr/mubu/

to attempt to control thesomasticks' sound, and slightly varying
movement frequency to explore ML materiality in relation to sound.

3.2.2 Cra�ing ML to Materialise Embodied Concepts.We identi�ed
unsupervised learningas one candidate technique to craft such a
kinaesthetic zoom. Speci�cally, we thought about using unsuper-
vised learning in an online setting: rather than separating train-
ing and performance steps�as in standard interactive supervised
learning work�ows [31, 36]�, we decided to merge both to have
ML continuously learn and dynamically adapt to input movement
data. Our intention was to let performers physically interact with a
�uid and adaptive model that constantly generates sound, depend-
ing on both previous and current movement. As such, performers
could experiment withlearning adaptationthrough the metaphor
of movement consistence: the more their movement would be con-
sistent, the more the sticks would focus in small variations in these
movements, helping performers zoom in speci�c qualities of their
movement. Thus, such a crafting di�ers from modern engineer-
ing of unsupervised learning, which leaves users passive during
learning adaptation: here, performers actively produce new unla-
beled data to shape learning adaptation, in what could be called
an interactive unsupervised learning work�ow�by analogy with
interactive supervised learning work�ows, in which users produce
new labeled data to interact with ML.

We used ashallow model, calledGaussian Mixture Model, to
perform the unsupervised learning task. Its simple structure, based
on Gaussian components, let us craft the kinaesthetic zoom in easier
ways than complex structures of deep neural networks. After some
initial tests, we opted for asmall dataapproach, using wavelet
features extracted over a 10-second sliding window as training
data accounting for movement periodicity. Lastly, we crafted an
online learning algorithmby retraining the ML model every 100
milliseconds over the full data set. While non-optimal from an
engineering perspective, this implementation enabled to rapidly
experiment with classi�cation enabled by unsupervised learning.

We used theXMM library3 for interactive machine learning [36]
and the Max/MSP visual programming environment�emerging
from NIME practices�to craft ML for thesomasticks. Crucially, us-
ing this interactive machine learning tool enabled us to fully focus
on experimenting and performing with ML, by rapidly implement-
ing the envisioned ML technique, model, and data features, while
skipping the engineering of online learning algorithm�deemed to
be a joint mathematical and technical challenge for ML [61]. Full
details of the implementation can be found in [74].

We used concatenative synthesis to generate new sound patterns
from recorded samples [73]. We created six sound corpuses related
to six elements commonly found in standard drum kits: bass drum,
snare drum, rack toms, hi-hat, crash, and ride. Each corpus was
carefully designed to contain a wide variety of performing modes
related to drumming�e.g., from soft to hard hitting. These modes
are easily captured by descriptors of concatenative synthesis [73].

The �rst author then experimented and performed with theso-
masticksto iterate and converge on a �xed mapping between sound
and ML. This mapping makes an extensive use of the uncertainties
produced by theGaussian Mixture Modelas creative material: prob-
abilities will dynamically adapt as performs continuously interact

3http://ircam-rnd.github.io/xmm/
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with the online learning algorithm, producing variations in sound
synthesis. The instantaneous class de�ned the sound corpus from
which samples are played. Gaussian probabilities set the respective
gains at which samples are played. The model probability set the
rhythmic period at which new samples are played: the higher the
probability is, the faster samples are played. The probability weights
set a random temporal variation for playing a sample: the more
weighted a cluster is, the more rhythmic the playing of its samples
is. Statistical means and covariances set the choice of sound sam-
ples: we scaled means over spectral and loudness sound descriptors,
and used covariances as radius to search sound space.

3.3 Di�ractive Analysis of Performers' Data
We experimentedsomasticksin a workshop involving six expert
performers�two dancers, two somaticists, two musicians (see Fig-
ure 3). All performers agreed to participate without compensation
to the workshop. Performers were asked to spend between 5 and 20
minutes experimentingsomasticksrelying on the following advice:
listen to the produced drum sounds, focus on their bodily sensa-
tions, and move freely with the sticks. Importantly, performers were
not explained technical details on ML to fully focus on embodied
interaction and performance with ML, following a NIME approach
(similar to Section 2.3). Informal discussion was then introduced by
the �rst author to disrupt hierarchies between them and perform-
ers and open up analysis from a variety of perspectives. The �rst
author used di�ractive analysis [6] to read through transcripts of
performers' audio-visual data. Rather than seeking to normative
framings, di�ractive analysis sought to illuminate di�erences in
performers' embodied perspectives as valid and generative results
for prototyping.

Figure 3: Pictures of performers experimenting with soma-
sticks in the workshop.

A �rst observation lies in the use of bodies and perception by
both the �rst author and performers to experiment with the sticks.
For example, one dancer tried not to move as she was �rst�in quest
of silence�, then seemed to understand that movement periodicity
was crucial to the model's functioning:�There is a kind of obstacle

course that appeared. [...] It was when I made small movements that I
managed to refocus on what I was doing, and to take back control over
the system�, she said. The other dancer seemed to grasp kinaesthetic
zooms enabled by ML:�I understood that there was a delay. This
meant that if I am doing the same thing during three seconds, the
totality [sic] will come after�, she said. The metaphors they used
suggest that the shallow model possesses rich material properties:
despite having elementary structure from a computational perspec-
tive, it managed to produce a diversity of experiences in performers,
who engaged their imaginary and bodily sensibilities to explore
ML.

The drum sticks and sounds had all performers adapt their move-
ment in di�erent ways, depending on their speci�c perception. For
example, two participants reported an asymmetry in their motion:
�The sticks, really, de�ne their very own geometry, so I focused a lot
on the trajectories de�ned by the lines [of the sticks]. [...] I rapidly
realized that I was very lateralized, in the sense that my right hand
dominates, and I am not trained in drumming�, one somatic practi-
tioner analysed. Another dancer modi�ed its movement exploration,
this time in relation to the act of drumming:�As soon as I saw it, I
thought that I can play [the drums]. Thus, I begin to sit down�, she
commented. Such speci�c patterns of movement data could not
have been anticipated if we opted for a traditional ML engineering
approach.

Eventually, the uncertainty of unsupervised learning classi�ca-
tions generated strong di�erences in experiences between perform-
ers, with some of them praising it��For me, there is something very
attractive in the fact that there are moments of synchrony and mo-
ments of autonomy. And in its autonomy, there were lots of variation
still, so it was always interesting to listen to, and move along with�,
one somaticist reported�, and others not hesitating to complain
about it� �It's kind of weird. Yeah, it's really high level, and then it's
like, you know... You feel like you're kind of blind, and then I have
no idea what's going on and why�, one musician confessed. These
observations may push one to improve engineering of the learning
algorithm�which we intentionally implemented non-optimally�as
next design step forsomasticks, with the goal of �nding some nor-
mative formulation to improve its interpretability. Or, one may take
this materiality of ML as it is, and embrace di�erences in experi-
ences that it produces in performers as characteristic ofsomasticks.
Going in this sense, one musician suggested to testsomastickson
an actual drumset:�I think it could be great, even to re�ne the system
in a kind of design process, to play it with something, you know, just,
like an augmented instrument�, he said.

Through this study, we demonstrated how an embodied ap-
proach led the �rst author to prototype ML in ways that valued
computational properties�real-time adaptation of online learning,
classi�cations of unsupervised learning, uncertainty of aGaussian
Mixture Model, and qualities of movement data�over modern engi-
neering. We also showed how di�ractive analysis enabled to value
di�erent embodiments produced by di�erent performers as situ-
ated ways of evaluating an early ML prototype, beyond normative
framings.
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4 STUDY 2:THE APPPRENTICES
Witnessing their relevance for attending to di�erences in human
experiences of ML, the �rst author decided to leverage di�ractive
methods throughout the prototyping of a collaborative robotic
art project (The Appprentices), started in 2020 at EnsadLab, Paris,
France, in collaboration with the Art Direction Nods Team (Xdlab)
of Orange, Châtillon, France. In this project, the �rst author acted
as computational and sound artist working with ML as creative
material. The interdisciplinary team, composed of members of the
Re�ective Interaction research group of EnsadLab, and of the Art
Direction Nods Team (Xdlab) of Orange, included one media artist,
one UX designer, one product designer, one anthropologist, one
cognitive psychologist, and two engineers. The creative process
that drove the following ML prototyping relied on the �rst au-
thor's di�ractive art practice, who moved within and beyond team
members' and other material agencies' perspectives to sustain con-
versations on ML and produce novel material con�gurations of ML.
The next sections describe the iterative and recursive journey of
di�ractive ML reading, material-centered design space stabilisation,
and di�ractive ML prototyping in which the interdisciplinary team
engaged4.

The project started from a common wish to engage in the craft-
ing of a collective ofbehavioral objects� i.e.,robotic objects that
avoid symbolic or anthropomorphic representations to diverge
from engineering-driven robotics [7, 13� 15, 54]. Such an artistic ap-
proach to robotics would enable all team members to explore novel
ways of designing objects, going beyond their physical and inter-
active aspects to embrace temporal aspects of movements, sounds,
and collective behaviours of objects. A long-term goal of the project
lies in evaluating audience experience of social behaviours emerg-
ing from spatio-temporal con�gurations of objects. Speci�cally,
a shared interest resided in the exploration of ML materiality to
generate movement-sound behaviors within our object collective,
as will be detailed in the following sections.

4.1 Di�ractive ML Reviewing
To start discussion and collaboration on exploring ML for behavioural
objects, an interrelated understanding of ML was required. Initial
meetings thus aimed at producing adi�ractive reviewof ML. Six
group meetings�involving individual presentations followed by
group discussions�as well as six informal brainstorming sessions
let the �rst author introduce data-driven techniques inherent to
ML (similar to Section 2.1), along with design concepts counterbal-
ancing modern ML engineering (similar to Section 2.2), and artistic
works exploring material con�gurations of ML (similar to Section
2.3). This interdisciplinary space, designed to match other team
members' interests, was essential to avoid technical barriers and
provoke conversations on how ML could be designed.

The diverse expertise inherent to our team in turn interfered
with these reviews. One UX designer situated ML within the lens
of social and cognitive theories of learning, spanning pedagogical
methods, a�ective theories, and animal behaviours, to imagine new
opportunities for ML. One media artist presented a range of artistic
works in the areas of cybernetics and behavioural aesthetics [65]

4Due to the global pandemic situation, collaboration progressively switched from
in-person meetings and workshops to virtual discussions and presentations.

to situate ML in a historical context, and call for material-centred
approaches to ML to explore novel con�gurations between humans
and machines. One anthropologist introduced practices of animism
led by diverse human communities to have team members re�ect
on their perception of ML and robotic objects as socio-material
artifacts. All in all, these di�ractive readings and conversations
helped us embrace a multiplicity of di�erent perspectives on ML,
which remained entangled throughout practice.

4.2 Stabilising a Material-Centered Design
Space

Progressively, conversations alone seem to prevent team members
from going further in ML design in relation to our object collective.
We thus decided to de�ne a material-centered design space forThe
Appprentices. While entangled in ML prototyping, object design
remains out of the scope of this paper. We will only sum up the
embodied concepts for ML that emerged from material practice
within the team, leaving details of object, sound, and movement
design as well as fabrication for a next paper.

We opted for a collective of three objects (see Figure 4). This
number was chosen to reduce complexity in the design of collec-
tive object behaviours, while also remaining su�ciently high to
study audience perception of collective object behaviours in fu-
ture work. We decided that all three objects would share same
shape (with a diameter of 15 centimeters), so that perception of
speci�c object behaviours would only emerge through temporal
aspects of movements, sounds, and learning. Crucially, we opted
for a hybrid installation-performanceformat, presenting our object
collective on a dark and circular stage with a diameter of 2 meters.
We opted for a structured performance format based on three short
parts�approximately �ve minutes each, resulting in a total dura-
tion of 15 minutes�, as an audience would spend relatively short
amounts of time facing the objects, reducing the probability for
complex human-objects relationships to emerge. This design con-
straint raised speci�c design challenge for ML, as will be detailed
below.

Figure 4: Rendering for The Appprentices.

We opted forsoft materialsto realise the objects' organic, un-
cluttered, and curved shape (see Figure 4), providing them with a
sense of aliveness throughout their materiality [41]. We chose to
use thesonic artifactsproduced by objects' motorised movements
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